Main Article Content

Abstract

The Renin-angiotensin system (RAS) plays an important role in the SARS-CoV-2 infection through Angiotensin-converting enzyme 2 (ACE2). Human recombinant soluble ACE2 (hrsACE2) has been shown to act as a competitive interceptor for SARS-CoV-2 by preventing the binding of viral particles to the ACE2. In addition, Rho-kinase inhibitors have been proven to suppress SARS-CoV-2 infection through inhibition of the Rho-associated protein kinase (ROCK) pathway. The combined effect of hrsACE2 and Rho-kinase inhibitor increases the activity and levels of ACE2 in protection through the Ang1-7 MasR, Ang1-9, and other mechanisms of protection. This literature review is done by searching journals with “COVID-19”, “ACE2”, “hrsACE2”, “Rho- kinase inhibitor”, and “ROCK pathway” as well as Boolean logic “AND” and “OR”. Relevant journals are used as references to compile systematic writing. Based on research results, hrsACE2 and Rho-kinase inhibitors have been clinically proven to protect tissue through the elevated level of ACE2 by the mechanism of Rho-kinase inhibitor, which increased Ang1-7 MasR concentration that gives vasodilatation, anti-proliferative, anti-inflammation, and anti-fibrotic effect. Rho-kinase inhibitors significantly reduce the number of infected cells by SARS-CoV-2 in COVID-19 patients. The potential of the combination therapy of Rho-kinase inhibitor and hrsACE2 therapy can be an efficient therapeutic solution for COVID-19 patients so that further research can be carried out in the future.

Keywords

Renin-angiotensin system SARS-COV2 rho-kinase covid-19 Human hrsACE2

Article Details

How to Cite
Halim, W., de Liyis, B. G., & Sukawati, C. I. I. D. (2022). Role of Rho-kinase Inhibitor and hrsACE2 in COVID-19 Patients Management. Neurologico Spinale Medico Chirurgico, 5(1), 63-69. https://doi.org/10.36444/nsmc.v5i1.201

References

  1. 1. Yi Y, Lagniton PNP, Ye S, Li E, Xu R-H. COVID-19: what has been learned and to be learned about the novel coronavirus disease. Int J Biol Sci [Internet]. 2020 Mar 15;16(10):1753–66. Available from: https://pubmed. ncbi.nlm.nih.gov/32226295
  2. 2. World Health Organization. WHO Coronavirus (COVID-19) Dashboard. 2021; Available from: https://covid19.who.int
  3. 3. Kementrian Kesehatan Republik Indonesia. Situasi Terkini Perkembangan Coronavirus Disease (COVID-19) 08 April 2021. 2021; Available from: https://infeksiemerging.kemkes.go.id/situasi-infeksi-emerging/situasi-terkini-perkembangan-coronavirus-disease-covid-19-08-april-2021#
  4. 4. Cugno M, Gualtierotti R, Casazza G, Tafuri F, Ghigliazza G, Torri A, et al. Mortality in Patients with COVID-19 on Renin Angiotensin System Inhibitor Long-Term Treatment: An Observational Study Showing that Things Are Not Always as They Seem. Adv Ther [Internet]. 2021; Available from: https://doi.org/10.1007/s12325-021-01704-y
  5. 5. Instiaty, Sri Darmayani IGAAP, Marzuki JE, Angelia F, William, Siane A, et al. Antiviral treatment of covid-19: A clinical pharmacology narrative review. Med J Indones [Internet]. 2020;29(3):332–45. Available from: http://dx.doi.org/10.13181/mji.rev.204652
  6. 6. Agrawal U, Raju R, Udwadia ZF. Favipiravir: A new and emerging antiviral option in COVID-19. Med J Armed Forces India [Internet]. 2020;76(4):370–6. Available from: https://doi.org/10.1016/j.mjafi.2020.08.004
  7. 7. Bourgonje AR, Abdulle AE, Timens W, Hillebrands J-L, Navis GJ, Gordijn SJ, et al. Angiotensin-converting enzyme 2 (ACE2), SARS-CoV-2 and the pathophysiology of coronavirus disease 2019 (COVID-19). J Pathol [Internet]. 2020/06/10. 2020 Jul;251(3):228–48. Available from: https://pubmed.ncbi.nlm.nih.gov/32418199
  8. 8. Zhang H, Penninger JM, Li Y, Zhong N, Slutsky AS. Angiotensin-converting enzyme 2 (ACE2) as a SARS-CoV-2 receptor: molecular mechanisms and potential therapeutic target. Intensive Care Med [Internet]. 2020;46(4):586–90. Available from: https://doi.org/10.1007/s00134-020-05985-9
  9. 9. Monteil V, Kwon H, Prado P, Hagelkrüys A, Wimmer RA, Stahl M, et al. Inhibition of SARS-CoV-2 Infections in Engineered Human Tissues Using Clinical-Grade Soluble Human ACE2. Cell. 2020 May;181(4):905-913.e7.
  10. 10. Urciuoli E, Peruzzi B. Inhibiting Extracellular Vesicle Trafficking as Antiviral Approach to Corona Virus Disease 2019 Infection. Front Pharmacol. 2020;11(September):1–6.
  11. 11. Sedgwick AE, Clancy JW, Olivia Balmert M, D’Souza-Schorey C. Extracellular microvesicles and invadopodia mediate non-overlapping modes of tumor cell invasion. Sci Rep [Internet]. 2015;5(1):14748. Available from: https://doi.org/10.1038/srep14748
  12. 12. Wang D, Hu B, Hu C, Zhu F, Liu X, Zhang J, et al. Clinical Characteristics of 138 Hospitalized Patients With 2019 Novel Coronavirus–Infected Pneumonia in Wuhan, China. JAMA [Internet]. 2020 Mar 17;323(11):1061–9. Available from: https://doi.org/10.1001/jama.2020.1585
  13. 13. Chan JF-W, Yuan S, Kok K-H, To KK-W, Chu H, Yang J, et al. A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: a study of a family cluster. Lancet [Internet]. 2020 Feb 15;395(10223):514–23. Available from: https://doi.org/10.1016/S0140-6736(20)30154-9
  14. 14. Ni W, Yang X, Yang D, Bao J, Li R, Xiao Y, et al. Role of angiotensin-converting enzyme 2 (ACE2) in COVID-19. Crit Care [Internet]. 2020;24(1):422. Available from: https://doi.org/10.1186/s13054-020-03120-0
  15. 15. Zou X, Chen K, Zou J, Han P, Hao J, Han Z. Single-cell RNA-seq data analysis on the receptor ACE2 expression reveals the potential risk of different human organs vulnerable to 2019-nCoV infection. Front Med. 2020 Apr;14(2):185–92.
  16. 16. Lauer SA, Grantz KH, Bi Q, Jones FK, Zheng Q, Meredith HR, et al. The Incubation Period of Coronavirus Disease 2019 (COVID-19) From Publicly Reported Confirmed Cases: Estimation and Application. Ann Intern Med [Internet]. 2020/03/10. 2020 May 5;172(9):577–82. Available from: https://pubmed.ncbi.nlm.nih.gov/32150748
  17. 17. Giannessi F, Aiello A, Franchi F, Percario ZA, Affabris E. The Role of Extracellular Vesicles as Allies of HIV, HCV and SARS Viruses. Viruses [Internet]. 2020 May 22;12(5):571. Available from: https://pubmed.ncbi.nlm.nih.gov/32456011
  18. 18. Doyle LM, Wang MZ. Overview of Extracellular Vesicles, Their Origin, Composition, Purpose, and Methods for Exosome Isolation and Analysis. Cells [Internet]. 2019 Jul 15;8(7):727. Available from: https://pubmed.ncbi.nlm.nih.gov/31311206
  19. 19. Patil AA, Rhee WJ. Exosomes: Biogenesis, Composition, Functions, and Their Role in Pre-metastatic Niche Formation. Biotechnol Bioprocess Eng [Internet]. 2019;24(5):689–701. Available from: https://doi.org/10.1007/s12257-019-0170-y
  20. 20. Nolte-’t Hoen E, Cremer T, Gallo RC, Margolis LB. Extracellular vesicles and viruses: Are they close relatives? Proc Natl Acad Sci U S A [Internet]. 2016/07/18. 2016 Aug 16;113(33):9155–61. Available from: https://pubmed.ncbi.nlm.nih.gov/27432966
  21. 21. Stancioiu F, Papadakis Z. G, Kteniadakis S, Izotov Nikovaevich B, Coleman D. M, Spandidos A. D, et al. A dissection of SARS‑CoV2 with clinical implications (Review). Int J Mol Med [Internet]. 2020;46(2):489–508. Available from: https://doi.org/10.3892/ijmm.2020.4636
  22. 22. Hoffmann M, Kleine-Weber H, Schroeder S, Krüger N, Herrler T, Erichsen S, et al. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell. 2020 Apr;181(2):271-280.e8.
  23. 23. Li Y, Zhou W, Yang L, You R. Physiological and pathological regulation of ACE2, the SARS-CoV-2 receptor. Pharmacol Res. 2020 Jul;157:104833.
  24. 24. Bernstein KE, Khan Z, Giani JF, Cao D-Y, Bernstein EA, Shen XZ. Angiotensin-converting enzyme in innate and adaptive immunity. Nat Rev Nephrol. 2018 May;14(5):325–36.
  25. 25. Yamamoto S, Yancey PG, Zuo Y, Ma L-J, Kaseda R, Fogo AB, et al. Macrophage polarization by angiotensin II-type 1 receptor aggravates renal injury-acceleration of atherosclerosis. Arterioscler Thromb Vasc Biol. 2011 Dec;31(12):2856–64.
  26. 26. Li C, Liu P-P, Tang D-D, Song R, Zhang Y-Q, Lei S, et al. Targeting the RhoA-ROCK pathway to regulate T-cell homeostasis in hypoxia-induced pulmonary arterial hypertension. Pulm Pharmacol & Ther [Internet]. 2018;50:111–22. Available from: http://europepmc.org/abstract/MED/29673911
  27. 27. Ocaranza MP, Rivera P, Novoa U, Pinto M, González L, Chiong M, et al. Rho kinase inhibition activates the homologous angiotensin-converting enzyme-angiotensin-(1-9) axis in experimental hypertension. J Hypertens. 2011 Apr;29(4):706–15.
  28. 28. Khodarahmi R, Sayad B, Sobhani M. The ACE2 as a “rescue protein” or “suspect enzyme” in COVID-19: possible application of the “engineered inactive hrsACE2” as a safer therapeutic agent in the treatment of SARS-CoV-2 infection. J Iran Chem Soc [Internet]. 2021;18(3):495–502. Available from: https://doi.org/10.1007/s13738-020-02049-z
  29. 29. Zoufaly A, Poglitsch M, Aberle JH, Hoepler W, Seitz T, Traugott M, et al. Human recombinant soluble ACE2 in severe COVID-19. Lancet Respir Med. 2020 Nov;8(11):1154–8.
  30. 30. Amen Y, Zhu Q, Tran H-B, Afifi MS, Halim AF, Ashour A, et al. Rho-kinase inhibitors from adlay seeds. Nat Prod Res. 2018 Aug;32(16):1955–9.
  31. 31. Abedi F, Rezaee R, Karimi G. Plausibility of therapeutic effects of Rho kinase inhibitors against Severe Acute Respiratory Syndrome Coronavirus 2 (COVID-19). Vol. 156, Pharmacological research. 2020. p. 104808.
  32. 32. Haschke M, Schuster M, Poglitsch M, Loibner H, Salzberg M, Bruggisser M, et al. Pharmacokinetics and pharmacodynamics of recombinant human angiotensin-converting enzyme 2 in healthy human subjects. Clin Pharmacokinet. 2013;52(9):783–92.
  33. 33. Abd El-Aziz TM, Al-Sabi A, Stockand JD. Human recombinant soluble ACE2 (hrsACE2) shows promise for treating severe COVID­19. Signal Transduct Target Ther [Internet]. 2020;5(1):3–4. Available from: http://dx.doi.org/10.1038/s41392-020-00374-6
  34. 34. Gupta V, Gupta N, Shaik IH, Mehvar R, McMurtry IF, Oka M, et al. Liposomal fasudil, a rho-kinase inhibitor, for prolonged pulmonary preferential vasodilation in pulmonary arterial hypertension. J Control Release [Internet]. 2013;167(2):189–99. Available from: http://dx.doi.org/10.1016/j.jconrel.2013.01.011
  35. 35. Indijah, Woro S, Fajri, Purnama, Saputri, Leo N. Modul Bahan Ajar Cetak Farmasi : Farmakologi [Internet]. 1st ed. Pusdik SDM Kesehatan. Jakarta: Kementrian Kesehatan RI; 2016. Available from: http://marefateadyan.nashriyat.ir/node/150
  36. 36. Zamai L. The Yin and Yang of ACE/ACE2 Pathways: The Rationale for the Use of Renin-Angiotensin System Inhibitors in COVID-19 Patients. Cells. 2020 Jul;9(7):1704.
  37. 37. Rudokas M, Najlah M, Alhnan MA, Elhissi A. Liposome Delivery Systems for Inhalation: A Critical Review Highlighting Formulation Issues and Anticancer Applications. Med Princ Pract. 2016;25(suppl 2)(Suppl. 2):60–72.
  38. 38. Sercombe L, Veerati T, Moheimani F, Wu SY, Sood AK, Hua S. Advances and Challenges of Liposome Assisted Drug Delivery. Front Pharmacol. 2015;6:286.
  39. 39. Batlle D, Wysocki J, Satchell K. Soluble angiotensin-converting enzyme 2: a potential approach for coronavirus infection therapy? Vol. 134, Clinical science (London, England : 1979). England; 2020. p. 543–5.
  40. 40. Guan W, Ni Z, Hu Y, Liang W, Ou C, He J, et al. Clinical Characteristics of Coronavirus Disease 2019 in China. N Engl J Med. 2020 Feb;382(18):1708–20.
  41. 41. Walls AC, Park Y-J, Tortorici MA, Wall A, McGuire AT, Veesler D. Structure, Function, and Antigenicity of the SARS-CoV-2 Spike Glycoprotein. Cell. 2020;181(2):281-292.e6.
  42. 42. Xu X, Shi L, Ma X, Su H, Ma G, Wu X, et al. RhoA-Rho associated kinase signaling leads to renin-angiotensin system imbalance and angiotensin converting enzyme 2 has a protective role in acute pulmonary embolism. Thromb Res. 2019 Apr;176:85–94.
  43. 43. Li B, Antonyak MA, Zhang J, Cerione RA. RhoA triggers a specific signaling pathway that generates transforming microvesicles in cancer cells. Oncogene. 2012 Nov;31(45):4740–9.
  44. 44. Calò LA, Facco M, Davis PA, Pagnin E, Maso LD, Puato M, et al. Endothelial progenitor cells relationships with clinical and biochemical factors in a human model of blunted angiotensin II signaling. Hypertens Res. 2011;34(9):1017–22.
  45. 45. Calò LA, Davis PA, Rossi GP. Understanding the mechanisms of angiotensin II signaling involved in hypertension and its long-term sequelae: insights from Bartter’s and Gitelman’s syndromes, human models of endogenous angiotensin II signaling antagonism. J Hypertens. 2014;32(11):2109–19; discussion 2119.
  46. 46. Kuriakose J, Montezano AC, Touyz RM. ACE2/Ang-(1-7)/Mas1 axis and the vascular system: vasoprotection to COVID-19-associated vascular disease. Clin Sci (Lond). 2021 Jan;135(2):387–407.
  47. 47. Santos RAS, Sampaio WO, Alzamora AC, Motta-Santos D, Alenina N, Bader M, et al. The ACE2/Angiotensin-(1–7)/MAS Axis of the Renin-Angiotensin System: Focus on Angiotensin-(1–7). Physiol Rev. 2017 Dec;98(1):505–53.
  48. 48. Augusto SR. Angiotensin-(1–7). Hypertension. 2014 Jun;63(6):1138–47.
  49. 49. Mendoza-Torres E, Oyarzún A, Mondaca-Ruff D, Azocar A, Castro PF, Jalil JE, et al. ACE2 and vasoactive peptides: novel players in cardiovascular/renal remodeling and hypertension. Ther Adv Cardiovasc Dis. 2015 Aug;9(4):217–37.
  50. 50. Shete A. Urgent need for evaluating agonists of angiotensin-(1-7)/Mas receptor axis for treating patients with COVID-19. Int J Infect Dis IJID Off Publ Int Soc Infect Dis. 2020 Jul;96:348–51.
  51. 51. Cox MJ, Lucien F, Sakemura R, Boysen JC, Kim Y, Horvei P, et al. Leukemic extracellular vesicles induce chimeric antigen receptor T cell dysfunction in chronic lymphocytic leukemia. Mol Ther. 2021;29(4):1529–40.
  52. 52. Latham SL, Chaponnier C, Dugina V, Couraud P-O, Grau GER, Combes V. Cooperation between β- and γ-cytoplasmic actins in the mechanical regulation of endothelial microparticle formation. FASEB J Off Publ Fed Am Soc Exp Biol. 2013 Feb;27(2):672–83.
  53. 53. Zhang S, Liu Y, Wang X, Yang L, Li H, Wang Y, et al. SARS-CoV-2 binds platelet ACE2 to enhance thrombosis in COVID-19. J Hematol Oncol. 2020 Sep;13(1):120.
  54. 54. Khan A, Benthin C, Zeno B, Albertson TE, Boyd J, Christie JD, et al. A pilot clinical trial of recombinant human angiotensin-converting enzyme 2 in acute respiratory distress syndrome. Crit Care. 2017 Sep;21(1):234.
  55. 55. Ding R, Zhao D, Li X, Liu B, Ma X. Rho-kinase inhibitor treatment prevents pulmonary inflammation and coagulation in lipopolysaccharide-induced lung injury. Thromb Res. 2017 Feb;150:59–64.
  56. 56. Cantoni S, Cavalli S, Pastore F, Accetta A, Pala D, Vaccaro F, et al. Pharmacological characterization of a highly selective Rho kinase (ROCK) inhibitor and its therapeutic effects in experimental pulmonary hypertension. Eur J Pharmacol. 2019 May;850:126–34.